일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- spring boot
- git
- 알고리즘
- OpenCV
- 카카오 알고리즘
- Nodejs
- thymeleaf
- 컴포넌트스캔
- 코테
- TypeORM
- 파이썬
- nestJS
- Spring
- 코딩테스트
- 프로그래머스
- C언어
- 구조체배열
- nestjs auth
- AWS
- nestjs typeorm
- 해시
- 가상면접사례로배우는대규모시스템설계기초
- @Component
- python
- 스프링
- @Autowired
- 카카오 코테
- 시스템호출
- 카카오
- C++
- Today
- Total
목록Edge Detection (3)
공부 기록장 💻
OpenCV 4로 배우는 영상 처리와 컴퓨터 비전 CH9. 에지 검출과 응용 정리 캐니 에지 검출기 소벨 마스크를 이용한 에지 검출 방법은구현이 간단하고 빠르게 동작하여 현재 컴퓨터 비전 시스템에서 사용되고 있지만, 그래디언트 크기만을 기준으로 에지 픽셀을 검출하기 때문에 임계값에 민감하고 에지 픽셀이 두껍게 표현되는 문제점이 있다. 1986년 캐니(J. Canny)는 에지 검출을 최적화 문제 관점으로 접근함으로써 소벨 에지 검출 방법의 단점을 해결할 수 있는 방법을 제시하였다. 캐니는 다음 세가지 항목을 좋은 에지 검출기의 조건으로 제시하였다. 1. 정확한 검출 (Good Detection) : 에지를 검출하지 못하거나, 또는 에지가 아닌데 에지로 검출하는 확률 최소화 필요 2. 정확한 위치 (Good..
OpenCV 4로 배우는 영상 처리와 컴퓨터 비전 CH9. 에지 검출과 응용 정리 마스크 기반 에지 검출 영상을 x, y축 방향으로 편미분 하는 1x3, 3x1 크기의 마스크를 통해 에지를 검출할 수 있는 것 같지만, 사실 대부분의 영상에는 잡음이 포함되어 있어 단순히 1x3, 3x1 마스크를 이용해서 미분을 구할 경우 다소 부정확한 결과가 생성될 수 있다. 따라서 실제 영상에서 미분을 구할 때는 좀 더 큰 크기의 마스크를 사용한다 가장 널리 사용되고 있는 미분 근사 마스크는 소벨 필터(Sobel Filter) 마스크 이다. 아래 그림 (a)는 x축으로 방향으로의 편미분을 구하는 소벨 마스크를, (b)는 y축 방향으로 편미분을 구하는 소벨 마스크이다. (a)에 나타난 미분 마스크는 현재 행에 대해 중앙 ..
OpenCV 4로 배우는 영상 처리와 컴퓨터 비전 CH9. 에지 검출 정리 영상의 에지 검출 영상에서 에지(edge)란 한쪽 방향으로 픽셀 값이 급격하게 바뀌는 부분으로, 픽셀 값의 변화율을 이용해 이를 찾을 수 있다. 2차원 디지털 영상에서 픽셀 값의 변화율을 근사화하여 구하는 방법과 다양한 응용에서 영상의 미분을 구하는 용도로 사용되고 있는 소벨 필터에 대해 알아보자. 미분과 그래디언트 에지란, 픽셀 값이 급격하게 바뀌는 부분으로 어두운 영역에서 갑자기 밝아지거나 반대로 밝은 영역에서 급격히 어두워지는 부분을 말한다. 일반적으로 객체와 배경의 경계, 또는 객체와 다른 객체의 경계에서 에지가 발생한다. 따라서 에지 검출은 컴퓨터 비전 시스템에서 객체의 윤곽을 알아내고, 객체를 판별하기 위한 전처리로 많..